($x^{2}$ - $y^{2}$ ) * ( $x^{2}$ - $y^{2}$ )

asked by guest
on Nov 25, 2024 at 12:46 pm



You asked:

Evaluate the expression: \(\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = \left(x^{2} - y^{2}\right)^{2} \)


Expanded

\[\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = x^{4} - 2 x^{2} y^{2} + y^{4}\]


Factored

\[\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = \left(x - y\right)^{2} \left(x + y\right)^{2}\]