($x^{2}$ - $y^{2}$ ) * ( $x^{2}$ - $y^{2}$ )
You asked:
Evaluate the expression: \(\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = \left(x^{2} - y^{2}\right)^{2} \)
Expanded
\[\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = x^{4} - 2 x^{2} y^{2} + y^{4}\]
Factored
\[\left({x}^{2} - {y}^{2}\right) \cdot \left({x}^{2} - {y}^{2}\right) = \left(x - y\right)^{2} \left(x + y\right)^{2}\]