aa-b(a-b)-b(a-b)-bb

asked by guest
on Mar 26, 2025 at 5:28 pm



You asked:

Evaluate the expression: aab(ab)b(ab)bba \cdot a - b \left(a - b\right) - b \left(a - b\right) - b \cdot b

MathBot Answer:

Evaluated



aab(ab)b(ab)bb=a2b22b(ab)\displaystyle a \cdot a - b \left(a - b\right) - b \left(a - b\right) - b \cdot b = a^{2} - b^{2} - 2 b \left(a - b\right)


Expanded

aab(ab)b(ab)bb=a22ab+b2a \cdot a - b \left(a - b\right) - b \left(a - b\right) - b \cdot b = a^{2} - 2 a b + b^{2}


Factored

aab(ab)b(ab)bb=(ab)2a \cdot a - b \left(a - b\right) - b \left(a - b\right) - b \cdot b = \left(a - b\right)^{2}