log_x(2) * log_x(3) = 5
You asked:
Solve the equation \(\log_{x}\left( 2 \cdot \log_{x}\left( 3 \right) \right) = 5\) for the variable \(x\).
MathBot Answer:
The complex solutions are: \[\left\{x\; \middle|\; x \in \mathbb{R} \wedge - x^{5} + \log{\left(3^{\frac{2}{\log{\left(x \right)}}} \right)} = 0 \right\} \setminus \left\{0, 1\right\}\]