(0.9)/(273)(8.62*10^-5)

asked by guest
on Nov 18, 2024 at 7:21 am



You asked:

Evaluate the expression: \(\frac{0.9}{273 \cdot 8.62 \cdot {10}^{-5}}\)

MathBot Answer:

\[\frac{0.9}{273 \cdot 8.62 \cdot {10}^{-5}} = \frac{1500000}{39221} \approx 38.24481782718441651156268325641876\]


\[\begin{aligned}\frac{0.9}{273 \cdot 8.62 \cdot {10}^{-5}}& = \frac{9}{10} \cdot \frac{1}{273 \cdot \left(8 + \frac{62}{100}\right) \cdot \frac{1}{10^{5}}}\\& = \frac{9}{10} \cdot \frac{1}{273 \cdot \left(8 + \frac{31}{50}\right) \cdot \frac{1}{10^{5}}}\\& = \frac{9}{10} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{10^{5}}}\\& = \frac{9}{10} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{100000}}\\& = \frac{9}{10} \cdot \frac{1}{\frac{117663}{50} \cdot \frac{1}{100000}}\\& = \frac{9}{10} \cdot \frac{1}{\frac{117663}{5000000}}\\& = 9 \cdot \frac{500000}{117663}\\& = \frac{1500000}{39221}\end{aligned}\]