$e^{2x}$ ( $2x^{2}$ - 8x -4)
You asked:
Evaluate the expression: \({e}^{2 x} \cdot \left(2 {x}^{2} - 8 x - 4\right)\)
MathBot Answer:
Evaluated
\(\displaystyle {e}^{2 x} \cdot \left(2 {x}^{2} - 8 x - 4\right) = \left(2 x^{2} - 8 x - 4\right) e^{2 x} \)
Expanded
\[{e}^{2 x} \cdot \left(2 {x}^{2} - 8 x - 4\right) = 2 x^{2} e^{2 x} - 8 x e^{2 x} - 4 e^{2 x}\]
Factored
\[{e}^{2 x} \cdot \left(2 {x}^{2} - 8 x - 4\right) = 2 \left(x^{2} - 4 x - 2\right) e^{2 x}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).