e^(ln(8)-(1/96))72

asked by guest
on Apr 03, 2025 at 2:23 am



You asked:

Evaluate the expression: eln(8)19672{e}^{\ln\left( 8 \right) - \frac{1}{96}} \cdot 72

MathBot Answer:

eln(8)19672=576e196570.03114177503805603861660135848235{e}^{\ln\left( 8 \right) - \frac{1}{96}} \cdot 72 = \frac{576}{e^{\frac{1}{96}}} \approx 570.03114177503805603861660135848235


eln(8)19672=elog(8)19672=e196+log(8)72=8e19672=576e196\begin{aligned}{e}^{\ln\left( 8 \right) - \frac{1}{96}} \cdot 72&=e^{\log{\left(8 \right)} - \frac{1}{96}} \cdot 72\\&=e^{- \frac{1}{96} + \log{\left(8 \right)}} \cdot 72\\&=8 \cdot e^{- \frac{1}{96}} \cdot 72\\&=576 \cdot e^{- \frac{1}{96}}\end{aligned}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.