(X-1)(2X+1)-(X-2)(3X-1)
You asked:
Evaluate the expression: \(\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = \left(2 X + 1\right) \left(X - 1\right) - \left(3 X - 1\right) \left(X - 2\right) \)
Expanded
\[\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = - X^{2} + 6 X - 3\]
Factored
\[\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = - X^{2} + 6 X - 3\]