(X-1)(2X+1)-(X-2)(3X-1)

asked by guest
on Nov 24, 2024 at 3:38 am



You asked:

Evaluate the expression: \(\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = \left(2 X + 1\right) \left(X - 1\right) - \left(3 X - 1\right) \left(X - 2\right) \)


Expanded

\[\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = - X^{2} + 6 X - 3\]


Factored

\[\left(X - 1\right) \cdot \left(2 X + 1\right) - \left(X - 2\right) \cdot \left(3 X - 1\right) = - X^{2} + 6 X - 3\]