√9(9-1.8)(1)(9-8.2)

asked by guest
on Nov 28, 2024 at 5:37 am



You asked:

Evaluate the expression: \(\sqrt{9} \cdot \left(9 - 1.8\right) \cdot 1 \cdot \left(9 - 8.2\right)\)

MathBot Answer:

\[\sqrt{9} \cdot \left(9 - 1.8\right) \cdot 1 \cdot \left(9 - 8.2\right) = \frac{432}{25} = 17.28\]


\[\begin{aligned}\sqrt{9} \cdot \left(9 - 1.8\right) \cdot 1 \cdot \left(9 - 8.2\right)& = \sqrt{9} \cdot \left(9 - \left(1 + \frac{8}{10}\right)\right) \cdot 1 \cdot \left(9 - \left(8 + \frac{2}{10}\right)\right)\\& = 3 \cdot \left(9 - \left(1 + \frac{8}{10}\right)\right) \cdot 1 \cdot \left(9 - \left(8 + \frac{2}{10}\right)\right)\\& = 3 \cdot \left(9 - \left(1 + \frac{4}{5}\right)\right) \cdot 1 \cdot \left(9 - \left(8 + \frac{2}{10}\right)\right)\\& = 3 \cdot \left(9 - \frac{9}{5}\right) \cdot 1 \cdot \left(9 - \left(8 + \frac{2}{10}\right)\right)\\& = 3 \cdot \frac{36}{5} \cdot 1 \cdot \left(9 - \left(8 + \frac{2}{10}\right)\right)\\& = 3 \cdot \frac{36}{5} \cdot 1 \cdot \left(9 - \left(8 + \frac{1}{5}\right)\right)\\& = 3 \cdot \frac{36}{5} \cdot 1 \cdot \left(9 - \frac{41}{5}\right)\\& = 3 \cdot \frac{36}{5} \cdot 1 \cdot \frac{4}{5}\\& = \frac{108}{5} \cdot 1 \cdot \frac{4}{5}\\& = \frac{108}{5} \cdot \frac{4}{5}\\& = \frac{432}{25}\end{aligned}\]