x^2/3+0.9sin(kx) /(3-x^2)

asked by guest
on Jan 19, 2025 at 1:58 pm



You asked:

Evaluate the expression: \(\frac{{x}^{2}}{3} + \frac{0.9 \sin\left( k x \right)}{3 - {x}^{2}}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{{x}^{2}}{3} + \frac{0.9 \sin\left( k x \right)}{3 - {x}^{2}} = \frac{x^{2}}{3} + \frac{9 \sin{\left(k x \right)}}{10 \cdot \left(3 - x^{2}\right)} \)


Expanded

\[\frac{{x}^{2}}{3} + \frac{0.9 \sin\left( k x \right)}{3 - {x}^{2}} = \frac{x^{2}}{3} + \frac{9 \sin{\left(k x \right)}}{30 - 10 x^{2}}\]


Factored

\[\frac{{x}^{2}}{3} + \frac{0.9 \sin\left( k x \right)}{3 - {x}^{2}} = \frac{10 x^{4} - 30 x^{2} - 27 \sin{\left(k x \right)}}{30 \left(x^{2} - 3\right)}\]