(696.64)+(RB*0.0612)=0.114

asked by guest
on Apr 06, 2025 at 8:12 am



You asked:

Investigate the equation: 696.64+RB0.0612=0.114696.64 + R B \cdot 0.0612 = 0.114.

MathBot Answer:

The graph of the equation 696.64+RB0.0612=0.114696.64 + R B \cdot 0.0612 = 0.114 is a hyperbola.


The coordinates of its foci are: (5920471051,5920471051)\left(- \frac{\sqrt{59204710}}{51}, \frac{\sqrt{59204710}}{51}\right) and (5920471051,5920471051)\left(\frac{\sqrt{59204710}}{51}, - \frac{\sqrt{59204710}}{51}\right).

The coordinates of its vertices are: (2960235551,2960235551)\left(- \frac{\sqrt{29602355}}{51}, \frac{\sqrt{29602355}}{51}\right) and (2960235551,2960235551)\left(\frac{\sqrt{29602355}}{51}, - \frac{\sqrt{29602355}}{51}\right).

The asymptotes have equations: 429602355B=0- 4 \sqrt{29602355} B = 0 and 429602355R=04 \sqrt{29602355} R = 0.

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls