(x ^ { 4 } -x ^ { 3 } +x ^ { 2 } -x+1) \div (x-1)

asked by guest
on Mar 26, 2025 at 8:33 pm



You asked:

Evaluate the expression: x4x3+x2x+1x1\frac{{x}^{4} - {x}^{3} + {x}^{2} - x + 1}{x - 1}

MathBot Answer:

Evaluated



x4x3+x2x+1x1=x4x3+x2x+1x1\displaystyle \frac{{x}^{4} - {x}^{3} + {x}^{2} - x + 1}{x - 1} = \frac{x^{4} - x^{3} + x^{2} - x + 1}{x - 1}


Expanded

x4x3+x2x+1x1=x4x1x3x1+x2x1xx1+1x1\frac{{x}^{4} - {x}^{3} + {x}^{2} - x + 1}{x - 1} = \frac{x^{4}}{x - 1} - \frac{x^{3}}{x - 1} + \frac{x^{2}}{x - 1} - \frac{x}{x - 1} + \frac{1}{x - 1}