(2x-5)[5(x+1)+2(x+2)]-4x(5x-4) =
You asked:
Evaluate the expression: \(\left(2 x - 5\right) \cdot \left(5 \cdot \left(x + 1\right) + 2 \cdot \left(x + 2\right)\right) - 4 \cdot x \cdot \left(5 x - 4\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(2 x - 5\right) \cdot \left(5 \cdot \left(x + 1\right) + 2 \cdot \left(x + 2\right)\right) - 4 \cdot x \cdot \left(5 x - 4\right) = - 4 x \left(5 x - 4\right) + \left(2 x - 5\right) \left(7 x + 9\right) \)
Expanded
\[\left(2 x - 5\right) \cdot \left(5 \cdot \left(x + 1\right) + 2 \cdot \left(x + 2\right)\right) - 4 \cdot x \cdot \left(5 x - 4\right) = - 6 x^{2} - x - 45\]
Factored
\[\left(2 x - 5\right) \cdot \left(5 \cdot \left(x + 1\right) + 2 \cdot \left(x + 2\right)\right) - 4 \cdot x \cdot \left(5 x - 4\right) = - 6 x^{2} - x - 45\]