(x-0.4)(x-0.5)(x-0.7)
You asked:
Evaluate the expression: \(\left(x - 0.4\right) \cdot \left(x - 0.5\right) \cdot \left(x - 0.7\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(x - 0.4\right) \cdot \left(x - 0.5\right) \cdot \left(x - 0.7\right) = \left(x - \frac{7}{10}\right) \left(x - \frac{1}{2}\right) \left(x - \frac{2}{5}\right) \)
Expanded
\[\left(x - 0.4\right) \cdot \left(x - 0.5\right) \cdot \left(x - 0.7\right) = x^{3} - \frac{8 x^{2}}{5} + \frac{83 x}{100} - \frac{7}{50}\]
Factored
\[\left(x - 0.4\right) \cdot \left(x - 0.5\right) \cdot \left(x - 0.7\right) = \frac{\left(2 x - 1\right) \left(5 x - 2\right) \left(10 x - 7\right)}{100}\]