14.1774/sin(120)=11/sin(x)

asked by guest
on Mar 25, 2025 at 2:42 am



You asked:

Solve the equation 14.1774sin(120)=11sin(x)\frac{14.1774}{\sin\left( 120 \right)} = \frac{11}{\sin\left( x \right)} for the variable xx.

MathBot Answer:

The 2 solutions to the equation are: x=arcsin(55000sin(120)70887)0.46730985x=πarcsin(55000sin(120)70887)2.6742828\begin{aligned}x &= \arcsin{\left(\frac{55000 \sin{\left(120 \right)}}{70887} \right)} \approx 0.46730985\\x &= \pi - \arcsin{\left(\frac{55000 \sin{\left(120 \right)}}{70887} \right)} \approx 2.6742828\end{aligned}