simplify (6⋅d/p)⋅(y⋅d/(5⋅p^5))^4

asked by guest
on Apr 04, 2025 at 6:38 am



You asked:

Simplify the expression: 6dp(yd5p5)4\frac{6 d}{p} {\left( \frac{y d}{5 {p}^{5}} \right)}^{4}

MathBot Answer:

Simplified:

6dp(yd5p5)4=6d5y4625p21 \frac{6 d}{p} {\left( \frac{y d}{5 {p}^{5}} \right)}^{4} = \frac{6 d^{5} y^{4}}{625 p^{21}}


6d(yd5p5)4p=6y4(15p5)4d5p=6y4d5p625p20=6y4d5625p21=6d5y4625p21\begin{aligned}\frac{6 d \left(\frac{y d}{5 p^{5}}\right)^{4}}{p}&=\frac{6 y^{4} \left(\frac{1}{5 p^{5}}\right)^{4} d^{5}}{p}\\&=\frac{6 y^{4} d^{5}}{p 625 p^{20}}\\&=\frac{6 y^{4} d^{5}}{625 p^{21}}\\&=\frac{6 d^{5} y^{4}}{625 p^{21}}\end{aligned}