7^ 2x -2*7^x+1=0
You asked:
Solve the equation \({7}^{2} x - 2 \cdot {7}^{x} + 1 = 0\) for the variable \(x\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}x &= \frac{0.0829329518076124379368287768848800856998607670607 - \frac{\log{\left(7 \right)}}{49}}{\log{\left(7 \right)}} \approx 0.022210943\\x &= \frac{3.94514026874106135968498848271140225356805411235 - \frac{\log{\left(7 \right)}}{49}}{\log{\left(7 \right)}} \approx 2.0069929\end{aligned}\]