(−𝟕 + 𝟕𝒊)(𝟏𝟎 − 𝟓𝒊)

asked by guest
on Mar 25, 2025 at 5:40 pm



You asked:

Evaluate the expression: (7+7i)(105i)\left(-7 + 7 i\right) \left(10 - 5 i\right)

MathBot Answer:

Evaluated



(7+7i)(105i)=(7+7i)(105i)\displaystyle \left(-7 + 7 i\right) \left(10 - 5 i\right) = \left(-7 + 7 i\right) \left(10 - 5 i\right)


Expanded

(7+7i)(105i)=35+105i\left(-7 + 7 i\right) \left(10 - 5 i\right) = -35 + 105 i


Factored

(7+7i)(105i)=(35+35i)(2i)\left(-7 + 7 i\right) \left(10 - 5 i\right) = \left(-35 + 35 i\right) \left(2 - i\right)


ii is the imaginary unit, defined as i2=1i^2 = -1.