The Maclaurin series for f(x)=cos( $\sqrt{\x}$ )
You asked:
Find the Maclaurin series of the function \(f\left( x \right) = \cos\left( \sqrt{x} \right)\).
MathBot Answer:
Series expansion:
\[1- \frac{x}{2} + \frac{x^{2}}{24}- \frac{x^{3}}{720} + \frac{x^{4}}{40320}- \frac{x^{5}}{3628800}+ \cdots\]
Series representation:
\[\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} x^{n}}{\left(2 n\right)!}\]
Converges for all values of \(x\)