find the integral of (x^2 e^x) / (x+2)^2 dx
You asked:
Evaluate the integral: \(\int{\frac{{x}^{2} {e}^{x}}{{\left( x + 2 \right)}^{2}}}dx\)
MathBot Answer:
Antiderivative
\[\int{\frac{{x}^{2} {e}^{x}}{{\left( x + 2 \right)}^{2}}}dx = \frac{\left(-2 + x\right) e^{x}}{2 + x} + C\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).