$\frac{\215}{\99}$+$\frac{\100}{\33}$-$\frac{\140}{\99}$
You asked:
Evaluate the expression: \(\frac{215}{99} + \frac{100}{33} - \frac{140}{99}\)
MathBot Answer:
\[ \frac{215}{99} + \frac{100}{33} - \frac{140}{99} = \frac{125}{33} = 3.\overline{78} \]
The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{215}{99}\), \(\frac{100}{33}\), and \(\frac{-140}{99}\) is \(99\). \[ \begin{aligned} \frac{215}{99} + \frac{100}{33} - \frac{140}{99} &= \frac{215 \cdot 1}{99 \cdot 1} + \frac{100 \cdot 3}{33 \cdot 3} + \frac{-140 \cdot 1}{99 \cdot 1} \\ &= \frac{215 + 300 + -140}{99} \\ &= \frac{375}{99} \\&= \frac{125}{33} \end{aligned} \]