y^2+1/4y^2=10,y^5-1/32y^5=?
You asked:
MathBot Answer:
\(y^{5} - \frac{1}{32 y^{5}} \in \left\{- \frac{1}{32 \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}} + \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}, \left(\frac{3}{2} - \frac{\sqrt{11}}{2}\right)^{5} - \frac{1}{32 \left(\frac{3}{2} - \frac{\sqrt{11}}{2}\right)^{5}}, - \frac{1}{32 \left(\frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}} + \left(\frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}, \left(- \frac{\sqrt{11}}{2} - \frac{3}{2}\right)^{5} - \frac{1}{32 \left(- \frac{\sqrt{11}}{2} - \frac{3}{2}\right)^{5}}\right\}\)
The 4 solutions to the equation are: \[\begin{aligned}y &= - \frac{3}{2} + \frac{\sqrt{11}}{2} \approx 0.1583124\\y &= \frac{3}{2} - \frac{\sqrt{11}}{2} \approx -0.1583124\\y &= \frac{3}{2} + \frac{\sqrt{11}}{2} \approx 3.1583124\\y &= - \frac{3}{2} - \frac{\sqrt{11}}{2} \approx -3.1583124\end{aligned}\]
By substituting this value into the expression, we find that: $$\begin{aligned}y^{5} - \frac{1}{32 y^{5}} &= - \frac{1}{32 \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}} + \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}\\&= - \frac{1}{32 \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}} + \left(- \frac{3}{2} + \frac{\sqrt{11}}{2}\right)^{5}\end{aligned}$$