limπ‘₯ β†’0 (s𝑒𝑛π‘₯ βˆ’ cosπ‘₯)/4x

asked by guest
on Mar 21, 2025 at 4:49 am



You asked:

Evaluate the expression: lim⁑xβ†’0sin⁑(x)βˆ’cos⁑(x)4x\lim_{x \to 0}{\frac{\sin\left( x \right) - \cos\left( x \right)}{4 x}}

MathBot Answer:

The two-sided limit lim⁑xβ†’0sin⁑(x)βˆ’cos⁑(x)4x\lim_{x \to 0}{\frac{\sin\left( x \right) - \cos\left( x \right)}{4 x}} does not exist because the directional limits from the right and the left result in different values.


Right limit:
lim⁑xβ†’0+(sin⁑(x)βˆ’cos⁑(x)4x)=βˆ’βˆž\displaystyle\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - \cos{\left(x \right)}}{4 x}\right) = -\infty


Left limit:
lim⁑xβ†’0βˆ’(sin⁑(x)βˆ’cos⁑(x)4x)=∞\displaystyle\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} - \cos{\left(x \right)}}{4 x}\right) = \infty

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls