$\sqrt{x^3}$ - 1/ $\sqrt{x^3}$ =14 find x+1/x

asked by guest
on Jan 15, 2025 at 9:46 am



You asked:

Given \(\sqrt{{x}^{3}} - \frac{1}{\sqrt{{x}^{3}}} = 14\) evaluate the expression \(x + \frac{1}{x}\).

MathBot Answer:

\[x + \frac{1}{x} = \frac{1}{2 \sqrt{2} + 3} + 2 \sqrt{2} + 3\]


The solution is: \[x = 3 + 2 \sqrt{2} \approx 5.8284271\]

By substituting this value into the expression, we find that: $$\begin{aligned}x + \frac{1}{x} &= \frac{1}{2 \sqrt{2} + 3} + \left(2 \sqrt{2} + 3\right)\\&= \frac{1}{2 \sqrt{2} + 3} + 2 \sqrt{2} + 3\end{aligned}$$