x3\sqrt{x^3}x3 - 1/ x3\sqrt{x^3}x3 =14 find x+1/x
asked by guest on Jan 15, 2025 at 9:46 am
MathBot Answer:
x+1x=122+3+22+3x + \frac{1}{x} = \frac{1}{2 \sqrt{2} + 3} + 2 \sqrt{2} + 3x+x1=22+31+22+3
The solution is: x=3+22≈5.8284271x = 3 + 2 \sqrt{2} \approx 5.8284271x=3+22≈5.8284271
By substituting this value into the expression, we find that: x+1x=122+3+(22+3)=122+3+22+3\begin{aligned}x + \frac{1}{x} &= \frac{1}{2 \sqrt{2} + 3} + \left(2 \sqrt{2} + 3\right)\\&= \frac{1}{2 \sqrt{2} + 3} + 2 \sqrt{2} + 3\end{aligned}x+x1=22+31+(22+3)=22+31+22+3