5xy √12x⁵y⁵ + 10x²y² √75x³y³ - 2x³y³ √3xy
You asked:
Evaluate the expression: \(5 x y \cdot \sqrt{12} \cdot {x}^{5} {y}^{5} + 10 {x}^{2} {y}^{2} \cdot \sqrt{75} \cdot {x}^{3} {y}^{3} - 2 {x}^{3} {y}^{3} \cdot \sqrt{3} \cdot x y\)
MathBot Answer:
Evaluated
\(\displaystyle 5 x y \cdot \sqrt{12} \cdot {x}^{5} {y}^{5} + 10 {x}^{2} {y}^{2} \cdot \sqrt{75} \cdot {x}^{3} {y}^{3} - 2 {x}^{3} {y}^{3} \cdot \sqrt{3} \cdot x y = 10 \sqrt{3} x^{6} y^{6} + 50 \sqrt{3} x^{5} y^{5} - 2 \sqrt{3} x^{4} y^{4} \)
Factored
\[5 x y \cdot \sqrt{12} \cdot {x}^{5} {y}^{5} + 10 {x}^{2} {y}^{2} \cdot \sqrt{75} \cdot {x}^{3} {y}^{3} - 2 {x}^{3} {y}^{3} \cdot \sqrt{3} \cdot x y = 2 \sqrt{3} x^{4} y^{4} \cdot \left(5 x^{2} y^{2} + 25 x y - 1\right)\]