2.575* $\frac{7.4}{ $\sqrt{463}$ }$

asked by guest
on Apr 04, 2025 at 11:28 am



You asked:

Evaluate the expression: 2.5757.44632.575 \cdot \frac{7.4}{\sqrt{463}}

MathBot Answer:

2.5757.4463=3811463926000.885560950214199800610837557749042.575 \cdot \frac{7.4}{\sqrt{463}} = \frac{3811 \sqrt{463}}{92600} \approx 0.88556095021419980061083755774904


2.5757.4463=(2+5751000)(7+410)1463=(2+2340)(7+410)1463=10340(7+410)1463=10340(7+25)1463=103403751463=10340372315463=381192600463\begin{aligned}2.575 \cdot \frac{7.4}{\sqrt{463}}&=\left(2 + \frac{575}{1000}\right) \cdot \left(7 + \frac{4}{10}\right) \cdot \frac{1}{\sqrt{463}}\\&=\left(2 + \frac{23}{40}\right) \cdot \left(7 + \frac{4}{10}\right) \cdot \frac{1}{\sqrt{463}}\\&=\frac{103}{40} \cdot \left(7 + \frac{4}{10}\right) \cdot \frac{1}{\sqrt{463}}\\&=\frac{103}{40} \cdot \left(7 + \frac{2}{5}\right) \cdot \frac{1}{\sqrt{463}}\\&=\frac{103}{40} \cdot \frac{37}{5} \cdot \frac{1}{\sqrt{463}}\\&=\frac{103}{40} \cdot \frac{37}{2315} \cdot \sqrt{463}\\&=\frac{3811}{92600} \cdot \sqrt{463}\end{aligned}