P(x)= 2x^2+x-5

Q(x)=4x^2+3x-x^4+4+2x^3

R(x)=x^3-x

S(x)=-x-2x^3+8-x^2

S(x) × P(x)=

asked by guest
on Nov 18, 2024 at 8:38 pm



You asked:

Given the following function definitions: \[\begin{aligned}P\left( x \right) &= 2 \cdot {x}^{2} + x - 5\\ Q\left( x \right) &= 4 \cdot {x}^{2} + 3 x - {x}^{4} + 4 + 2 \cdot {x}^{3}\\ R\left( x \right) &= {x}^{3} - x\\ S\left( x \right) &= -x - 2 \cdot {x}^{3} + 8 - {x}^{2}\end{aligned}\] Evaluate \(S\left( x \right) \cdot P\left( x \right)\).

MathBot Answer:

$$\begin{aligned}S\left( x \right) \cdot P\left( x \right)&=- 4 x^{5} - 4 x^{4} + 7 x^{3} + 20 x^{2} + 13 x - 40\end{aligned}$$


$$\begin{aligned}S\left( x \right) \cdot P\left( x \right)&=\left(8 - x - x^{2} - 2 x^{3}\right) \left(-5 + x + 2 x^{2}\right)\\S\left( x \right) \cdot P\left( x \right)&=- 4 x^{5} - 4 x^{4} + 7 x^{3} + 20 x^{2} + 13 x - 40\\\end{aligned}$$