$\frac{1}{√1+√2}$+$\frac{1} {√2 + √3}$+ $\frac{1}{√3 + √4}$
You asked:
MathBot Answer:
\[\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} = \frac{1}{\sqrt{3} + 2} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{1 + \sqrt{2}} \approx 1.0\]
\[\begin{aligned}\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}}& = \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}}\\& = \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + 2}\\& = \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{2 + \sqrt{3}}\\& = \left(\frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}}\right) + \frac{1}{2 + \sqrt{3}}\\& = \frac{1}{1 + \sqrt{2}} + \frac{1}{2 + \sqrt{3}} + \frac{1}{\sqrt{2} + \sqrt{3}}\end{aligned}\]