[¬ (P → Q) ↔ ¬Q] ∧ (¬Q)

asked by guest
on Jul 03, 2024 at 11:55 am

MathBot Answer:

Logic Expression
Symbol: $\left(\neg \left(P \rightarrow Q\right) \leftrightarrow \neg Q\right) \wedge \neg Q$
Text: $\left(\text{not} \left(P \text{ implies } Q\right) \text{ if and only if } \text{not } Q\right) \text{ and } \text{not } Q$


Classification contingency


Truth Table

Legend

$P$$Q$$P \rightarrow Q$$\neg \left(P \rightarrow Q\right)$$\neg Q$$\neg \left(P \rightarrow Q\right) \leftrightarrow \neg Q$$\left(\neg \left(P \rightarrow Q\right) \leftrightarrow \neg Q\right) \wedge \neg Q$
1110010
1001111
0110010
0010100
T/F

Simplification$$\begin{gathered} \left(\neg \left(P \rightarrow Q\right) \leftrightarrow \neg Q\right) \wedge \neg Q & \equiv & \left(\left(P \wedge \neg Q\right) \leftrightarrow \neg Q\right) \wedge \neg Q & \text{Negation of Conditional Equivalence} \\ & \equiv & \left(\left(P \wedge \neg Q\right) \vee \neg \left(\neg Q\right)\right) \wedge \left(\neg \left(P \wedge \neg Q\right) \vee \neg Q\right) \wedge \neg Q & \text{Biconditional Equivalence} \\ & \equiv & \left(P \vee \neg \left(\neg Q\right)\right) \wedge \left(\neg \left(P \wedge \neg Q\right) \vee \neg Q\right) \wedge \neg Q & \text{Redundancy Law (2)} \\ & \equiv & \left(P \vee Q\right) \wedge \left(\neg \left(P \wedge \neg Q\right) \vee \neg Q\right) \wedge \neg Q & \text{Double Negation Law} \\ & \equiv & \left(P \vee Q\right) \wedge \left(\neg P \vee \neg \left(\neg Q\right) \vee \neg Q\right) \wedge \neg Q & \text{De Morgan's Law} \\ & \equiv & \left(P \vee Q\right) \wedge \left(\neg P \vee Q \vee \neg Q\right) \wedge \neg Q & \text{Double Negation Law} \\ & \equiv & \left(P \vee Q\right) \wedge \left(\neg P \vee \text{True}\right) \wedge \neg Q & \text{Complement Law} \\ & \equiv & \left(P \vee Q\right) \wedge \text{True} \wedge \neg Q & \text{Domination Law} \\ & \equiv & \left(P \vee Q\right) \wedge \neg Q & \text{Identity Law} \\ & \equiv & P \wedge \neg Q & \text{Redundancy Law (2)} \end{gathered}$$ Note: Solution may not be as simplified as possible.


Conjunctive Normal Form$$P \wedge \neg Q$$


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. $$\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array}$$ $$\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}$$

asked 2 days ago

active 2 days ago