$\frac{x}{x+3}$ + $\frac{3(2x+1)}{x^2+x-6}$
You asked:
Evaluate the expression: \(\frac{x}{x + 3} + \frac{3 \cdot \left(2 x + 1\right)}{{x}^{2} + x - 6}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{x}{x + 3} + \frac{3 \cdot \left(2 x + 1\right)}{{x}^{2} + x - 6} = \frac{x}{x + 3} + \frac{3 \cdot \left(2 x + 1\right)}{x^{2} + x - 6} \)
Expanded
\[\frac{x}{x + 3} + \frac{3 \cdot \left(2 x + 1\right)}{{x}^{2} + x - 6} = \frac{6 x}{x^{2} + x - 6} + \frac{x}{x + 3} + \frac{3}{x^{2} + x - 6}\]
Factored
\[\frac{x}{x + 3} + \frac{3 \cdot \left(2 x + 1\right)}{{x}^{2} + x - 6} = \frac{x + 1}{x - 2}\]