L ^-1{5s^2+3s-16/(s-1)(s-2)(s+3)}
You asked:
Evaluate the expression: \({L}^{-1} \cdot \left(5 {s}^{2} + 3 s - \frac{16}{\left(s - 1\right) \cdot \left(s - 2\right) \cdot \left(s + 3\right)}\right)\)
MathBot Answer:
Evaluated
\(\displaystyle {L}^{-1} \cdot \left(5 {s}^{2} + 3 s - \frac{16}{\left(s - 1\right) \cdot \left(s - 2\right) \cdot \left(s + 3\right)}\right) = \frac{5 s^{2} + 3 s - \frac{16}{\left(s - 2\right) \left(s - 1\right) \left(s + 3\right)}}{L} \)
Expanded
\[{L}^{-1} \cdot \left(5 {s}^{2} + 3 s - \frac{16}{\left(s - 1\right) \cdot \left(s - 2\right) \cdot \left(s + 3\right)}\right) = - \frac{16}{s^{3} L - 7 L s + 6 L} + \frac{5 s^{2}}{L} + \frac{3 s}{L}\]
Factored
\[{L}^{-1} \cdot \left(5 {s}^{2} + 3 s - \frac{16}{\left(s - 1\right) \cdot \left(s - 2\right) \cdot \left(s + 3\right)}\right) = \frac{5 s^{5} + 3 s^{4} - 35 s^{3} + 9 s^{2} + 18 s - 16}{L \left(s - 2\right) \left(s - 1\right) \left(s + 3\right)}\]