12/(2^3/4)^-2+1
You asked:
Evaluate the expression: \(\frac{12}{{\left( \frac{{2}^{3}}{4} \right)}^{-2}} + 1\)
MathBot Answer:
\[\frac{12}{{\left( \frac{{2}^{3}}{4} \right)}^{-2}} + 1 = 49\]
\[\begin{aligned}\frac{12}{{\left( \frac{{2}^{3}}{4} \right)}^{-2}} + 1& = 12 \cdot \frac{1}{\frac{1}{\left(2^{3} \cdot \frac{1}{4}\right)^{2}}} + 1\\& = 12 \cdot \frac{1}{\frac{1}{\left(\frac{8}{4}\right)^{2}}} + 1\\& = 12 \cdot \frac{1}{\frac{1}{2^{2}}} + 1\\& = 12 \cdot \frac{1}{\frac{1}{4}} + 1\\& = 48 + 1\\& = 49\end{aligned}\]