(0.85*41.4*X*500)+(4 $\pi$ (32)^2)/4(600(((X/0.7542)-66)/(X/0.7542))-0.85*41.4)=5/4* $\pi$ *32^2*525
You asked:
Solve the equation \(0.85 \cdot 41.4 X \cdot 500 + \frac{4 \cdot \pi \cdot {32}^{2}}{4 \cdot \left(600 \cdot \frac{\frac{X}{0.7542} - 66}{\frac{X}{0.7542}} - 0.85 \cdot 41.4\right)} = \frac{5}{4} \cdot \pi \cdot {32}^{2} \cdot 525\) for the variable \(X\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}X &= \frac{497772}{18827} + \frac{4 \sqrt{1725925270780052001 - 2493181067022486720 \pi + 900369914345497600 \pi^{2}}}{198756639} + \frac{3795512960 \pi}{198756639} \approx 119.98523\\X &= \frac{497772}{18827} - \frac{4 \sqrt{1725925270780052001 - 2493181067022486720 \pi + 900369914345497600 \pi^{2}}}{198756639} + \frac{3795512960 \pi}{198756639} \approx 52.878781\end{aligned}\]