-16x/(x^2-4)^2

asked by guest
on Apr 04, 2025 at 3:00 pm



You asked:

Evaluate the expression: (16x)(x24)2\frac{-\left( 16 x \right)}{{\left( {x}^{2} - 4 \right)}^{2}}

MathBot Answer:

Evaluated



(16x)(x24)2=16x(x24)2\displaystyle \frac{-\left( 16 x \right)}{{\left( {x}^{2} - 4 \right)}^{2}} = - \frac{16 x}{\left(x^{2} - 4\right)^{2}}


Expanded

(16x)(x24)2=16xx48x2+16\frac{-\left( 16 x \right)}{{\left( {x}^{2} - 4 \right)}^{2}} = - \frac{16 x}{x^{4} - 8 x^{2} + 16}


Factored

(16x)(x24)2=16x(x2)2(x+2)2\frac{-\left( 16 x \right)}{{\left( {x}^{2} - 4 \right)}^{2}} = - \frac{16 x}{\left(x - 2\right)^{2} \left(x + 2\right)^{2}}