1549.73^2+((1549.73*(16+x^2))/(x^2-16))^2+1549.73*((1549.73*(16+x^2))/(x^2-16))-2500^2=0
You asked:
Solve the equation \({1549.73}^{2} + {\left( \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \right)}^{2} + 1549.73 \cdot \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} - {2500}^{2} = 0\) for the variable \(x\).
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= - 4 \sqrt{- \frac{62500000000}{9549892187} + \frac{154973 \sqrt{177950107813}}{9549892187}} \approx -2.1943474\\x &= 4 \sqrt{- \frac{62500000000}{9549892187} + \frac{154973 \sqrt{177950107813}}{9549892187}} \approx 2.1943474\\x &= 4 i \sqrt{- \frac{154973 \sqrt{177950107813}}{9549892187} - \frac{62500000000}{9549892187}} i \approx -14.636995 i\\x &= - 4 i \sqrt{- \frac{154973 \sqrt{177950107813}}{9549892187} - \frac{62500000000}{9549892187}} i \approx 14.636995 i\end{aligned}\]