k=0n4k\sum_{k=0}^{n}{4^{-k}}

asked by guest
on Nov 28, 2024 at 5:59 am



You asked:

Evaluate the expression: k=0n4k\sum_{k = 0}^{n} {{4}^{-k}}

MathBot Answer:

k=0n4k=43134n\sum_{k=0}^{n} 4^{- k} = \frac{4}{3} - \frac{1}{3 \cdot 4^{n}}


k=0n4k=((14)1+n+1)14+1   by the identityn=0man=1am+11a=43134n\begin{aligned}\sum_{k=0}^{n} 4^{- k} &= \frac{\left(- \left(\frac{1}{4}\right)^{1 + n} + 1\right)}{\frac{-1}{4} + 1} \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=0}^{m} a^n = \frac{1-a^{m+1}}{1-a}}\\&= \frac{4}{3} - \frac{1}{3 \cdot 4^{n}}\end{aligned}