subtract the cube root of the product of h and 3k from the square of the sum of p and q
You asked:
Evaluate the expression: \({\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k}\)
MathBot Answer:
Evaluated
\(\displaystyle {\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = - \sqrt[3]{3} \sqrt[3]{h k} + \left(p + q\right)^{2} \)
Expanded
\[{\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = p^{2} + 2 p q + q^{2} - \sqrt[3]{3} \sqrt[3]{h k}\]
Factored
\[{\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = p^{2} + 2 p q + q^{2} - \sqrt[3]{3} \sqrt[3]{h k}\]