subtract the cube root of the product of h and 3k from the square of the sum of p and q

asked by guest
on Nov 25, 2024 at 3:22 pm



You asked:

Evaluate the expression: \({\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k}\)

MathBot Answer:

Evaluated



\(\displaystyle {\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = - \sqrt[3]{3} \sqrt[3]{h k} + \left(p + q\right)^{2} \)


Expanded

\[{\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = p^{2} + 2 p q + q^{2} - \sqrt[3]{3} \sqrt[3]{h k}\]


Factored

\[{\left( p + q \right)}^{2} - \sqrt[3]{h \cdot 3 k} = p^{2} + 2 p q + q^{2} - \sqrt[3]{3} \sqrt[3]{h k}\]