simplify (6⋅d/p)⋅(y⋅d/5⋅p^5)^4
asked by guest on Apr 04, 2025 at 6:38 am
You asked:
MathBot Answer:
6dp(yd5p5)4=6d5p19y4625 \frac{6 d}{p} {\left( \frac{y d}{5} {p}^{5} \right)}^{4} = \frac{6 d^{5} p^{19} y^{4}}{625} p6d(5ydp5)4=6256d5p19y4
6d(ydp55)4p=6d5p19y4(15)4=6d5p19y4625=6y4d5p19625=6d5p19y4625\begin{aligned}\frac{6 d \left(\frac{y d p^{5}}{5}\right)^{4}}{p}&=6 d^{5} p^{19} y^{4} \left(\frac{1}{5}\right)^{4}\\&=\frac{6 d^{5} p^{19} y^{4}}{625}\\&=\frac{6 y^{4} d^{5} p^{19}}{625}\\&=\frac{6 d^{5} p^{19} y^{4}}{625}\end{aligned}p6d(5ydp5)4=6d5p19y4(51)4=6256d5p19y4=6256y4d5p19=6256d5p19y4