simplify (6⋅d/p)⋅(y⋅d/5⋅p^5)^4

asked by guest
on Apr 04, 2025 at 6:38 am



You asked:

Simplify the expression: 6dp(yd5p5)4\frac{6 d}{p} {\left( \frac{y d}{5} {p}^{5} \right)}^{4}

MathBot Answer:

Simplified:

6dp(yd5p5)4=6d5p19y4625 \frac{6 d}{p} {\left( \frac{y d}{5} {p}^{5} \right)}^{4} = \frac{6 d^{5} p^{19} y^{4}}{625}


6d(ydp55)4p=6d5p19y4(15)4=6d5p19y4625=6y4d5p19625=6d5p19y4625\begin{aligned}\frac{6 d \left(\frac{y d p^{5}}{5}\right)^{4}}{p}&=6 d^{5} p^{19} y^{4} \left(\frac{1}{5}\right)^{4}\\&=\frac{6 d^{5} p^{19} y^{4}}{625}\\&=\frac{6 y^{4} d^{5} p^{19}}{625}\\&=\frac{6 d^{5} p^{19} y^{4}}{625}\end{aligned}