simplify sinAcosAtanA+2sinAcos^3A/sin2A

asked by guest
on Mar 31, 2025 at 2:24 pm



You asked:

Simplify the expression: sin(A)cos(A)tan(A)+2sin(A)cos(A)3sin(2A)\sin\left( A \right) \cos\left( A \right) \tan\left( A \right) + \frac{2 \sin\left( A \right) \cdot {\cos\left( A \right)}^{3}}{\sin\left( 2 A \right)}

MathBot Answer:

Simplified:

sin(A)cos(A)tan(A)+2sin(A)cos(A)3sin(2A)=sin(2A)tan(A)2+cos(2A)2+12 \sin\left( A \right) \cos\left( A \right) \tan\left( A \right) + \frac{2 \sin\left( A \right) \cdot {\cos\left( A \right)}^{3}}{\sin\left( 2 A \right)} = \frac{\sin{\left(2 A \right)} \tan{\left(A \right)}}{2} + \frac{\cos{\left(2 A \right)}}{2} + \frac{1}{2}


Factored:

sin(A)cos(A)tan(A)+2sin(A)cos(A)3sin(2A)=(sin(2A)tan(A)+2cos2(A))sin(A)cos(A)sin(2A) \sin\left( A \right) \cos\left( A \right) \tan\left( A \right) + \frac{2 \sin\left( A \right) \cdot {\cos\left( A \right)}^{3}}{\sin\left( 2 A \right)} = \frac{\left(\sin{\left(2 A \right)} \tan{\left(A \right)} + 2 \cos^{2}{\left(A \right)}\right) \sin{\left(A \right)} \cos{\left(A \right)}}{\sin{\left(2 A \right)}}