10$e^{x}$cos(x)-12$e^{sin(x)}$-6ln($x^{2}$+1)+7
You asked:
Evaluate the expression: \(10 {e}^{x} \cdot \cos\left( x \right) - 12 {e}^{\sin\left( x \right)} - 6 \ln\left( {x}^{2} + 1 \right) + 7\)
MathBot Answer:
\[10 {e}^{x} \cdot \cos\left( x \right) - 12 {e}^{\sin\left( x \right)} - 6 \ln\left( {x}^{2} + 1 \right) + 7 = 10 e^{x} \cos{\left(x \right)} - 12 e^{\sin{\left(x \right)}} - 6 \log{\left(x^{2} + 1 \right)} + 7\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).