220-10w^2 ((270-13w^2)(350-15w^2)-(-150)(150))-(-120)((-120)(350-15w^2)-(0)(150))

asked by guest
on Nov 25, 2024 at 7:44 am



You asked:

Evaluate the expression: 22010w2((27013w2)(35015w2)150150)120(120(35015w2)0150)220 - 10 {w}^{2} \left(\left(270 - 13 {w}^{2}\right) \left(350 - 15 {w}^{2}\right) - -150 \cdot 150\right) - -120 \left(-120 \left(350 - 15 {w}^{2}\right) - 0 \cdot 150\right)

MathBot Answer:

Evaluated



22010w2((27013w2)(35015w2)150150)120(120(35015w2)0150)=10w2((27013w2)(35015w2)+22500)+216000w25039780\displaystyle 220 - 10 {w}^{2} \left(\left(270 - 13 {w}^{2}\right) \left(350 - 15 {w}^{2}\right) - -150 \cdot 150\right) - -120 \left(-120 \left(350 - 15 {w}^{2}\right) - 0 \cdot 150\right) = - 10 w^{2} \left(\left(270 - 13 w^{2}\right) \left(350 - 15 w^{2}\right) + 22500\right) + 216000 w^{2} - 5039780


Expanded

22010w2((27013w2)(35015w2)150150)120(120(35015w2)0150)=1950w6+86000w4954000w25039780220 - 10 {w}^{2} \left(\left(270 - 13 {w}^{2}\right) \left(350 - 15 {w}^{2}\right) - -150 \cdot 150\right) - -120 \left(-120 \left(350 - 15 {w}^{2}\right) - 0 \cdot 150\right) = - 1950 w^{6} + 86000 w^{4} - 954000 w^{2} - 5039780


Factored

22010w2((27013w2)(35015w2)150150)120(120(35015w2)0150)=10(195w68600w4+95400w2+503978)220 - 10 {w}^{2} \left(\left(270 - 13 {w}^{2}\right) \left(350 - 15 {w}^{2}\right) - -150 \cdot 150\right) - -120 \left(-120 \left(350 - 15 {w}^{2}\right) - 0 \cdot 150\right) = - 10 \cdot \left(195 w^{6} - 8600 w^{4} + 95400 w^{2} + 503978\right)