solve y = -2.732e-6x^3+2.65e-3x^2+1.546e-1x -3.45 for x
You asked:
MathBot Answer:
$$\begin{aligned}x &= - \frac{\sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\\x &= - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\\x &= - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\end{aligned}$$