solve y = -2.732e-6x^3+2.65e-3x^2+1.546e-1x -3.45 for x

asked by guest
on Jan 23, 2025 at 8:59 am



You asked:

Solve the equation y=(2.732e)6x3+2.65e3x2+1.546e1x3.45y = -\left( 2.732 e \right) - 6 {x}^{3} + 2.65 e - 3 {x}^{2} + 1.546 e - 1 x - 3.45 for the unknown xx.

MathBot Answer:

x=9y4+(9y21647e250+60140)2+11621647e500+601803316+1129y4+(9y21647e250+60140)2+11621647e500+601803x=(123i2)9y4+(9y21647e250+60140)2+11621647e500+601803316+112(123i2)9y4+(9y21647e250+60140)2+11621647e500+601803x=(12+3i2)9y4+(9y21647e250+60140)2+11621647e500+601803316+112(12+3i2)9y4+(9y21647e250+60140)2+11621647e500+601803\begin{aligned}x &= - \frac{\sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\\x &= - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\\x &= - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}{3} - \frac{1}{6} + \frac{1}{12 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9 y}{4} + \frac{\sqrt{\left(\frac{9 y}{2} - \frac{1647 e}{250} + \frac{601}{40}\right)^{2} + \frac{1}{16}}}{2} - \frac{1647 e}{500} + \frac{601}{80}}}\end{aligned}