(2x+2)*(x+5)*($3x^{2}$-4x-15)

asked by guest
on Nov 26, 2024 at 12:19 pm



You asked:

Evaluate the expression: \(\left(2 x + 2\right) \cdot \left(x + 5\right) \cdot \left(3 {x}^{2} - 4 x - 15\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left(2 x + 2\right) \cdot \left(x + 5\right) \cdot \left(3 {x}^{2} - 4 x - 15\right) = \left(2 x + 2\right) \left(x + 5\right) \left(3 x^{2} - 4 x - 15\right) \)


Expanded

\[\left(2 x + 2\right) \cdot \left(x + 5\right) \cdot \left(3 {x}^{2} - 4 x - 15\right) = 6 x^{4} + 28 x^{3} - 48 x^{2} - 220 x - 150\]


Factored

\[\left(2 x + 2\right) \cdot \left(x + 5\right) \cdot \left(3 {x}^{2} - 4 x - 15\right) = 2 \cdot \left(3 x + 5\right) \left(x - 3\right) \left(x + 1\right) \left(x + 5\right)\]