\left(-\frac{1}{3}\right)^4\left(-\ \frac{1}{3}\right)\left(-\frac{1}{3}\right)^5

asked by guest
on Nov 16, 2024 at 10:40 am



You asked:

Evaluate the expression: \({\left( -\left( \frac{1}{3} \right) \right)}^{4} \cdot -\left( \frac{1}{3} \right) \cdot {\left( -\left( \frac{1}{3} \right) \right)}^{5}\)

MathBot Answer:

\[{\left( -\left( \frac{1}{3} \right) \right)}^{4} \cdot -\left( \frac{1}{3} \right) \cdot {\left( -\left( \frac{1}{3} \right) \right)}^{5} = \frac{1}{59049} \approx 0.00001693508780843028671103659672\]


\[\begin{aligned}{\left( -\left( \frac{1}{3} \right) \right)}^{4} \cdot -\left( \frac{1}{3} \right) \cdot {\left( -\left( \frac{1}{3} \right) \right)}^{5}& = \left(- \frac{1}{3}\right)^{4} \cdot - \frac{1}{3} \cdot \left(- \frac{1}{3}\right)^{5}\\& = \frac{1}{81} \cdot - \frac{1}{3} \cdot \left(- \frac{1}{3}\right)^{5}\\& = \frac{1}{81} \cdot - \frac{1}{3} \cdot - \frac{1}{243}\\& = - \frac{1}{243} \cdot - \frac{1}{243}\\& = \frac{1}{59049}\end{aligned}\]