19.62sec^2(x) - 40tan(x) - 0.8 = 0

asked by guest
on Mar 30, 2025 at 10:43 pm



You asked:

Solve the equation 19.62sec(x)240tan(x)0.8=019.62 {\sec\left( x \right)}^{2} - 40 \tan\left( x \right) - 0.8 = 0 for the variable xx.

MathBot Answer:

The real solutions are: x={arctan(20000764799617687976479)2+2πn  |  nZ}{6.2831853n+0.63495225  |  nZ}x={πarctan(20000764799617687976479)2+2πn  |  nZ}{6.2831853n+3.7765449  |  nZ}x={π2arctan(2000076479+9617687976479)2+2πn  |  nZ}{6.2831853n+0.91584674  |  nZ}x={arctan(2000076479+9617687976479)2+3π2+2πn  |  nZ}{6.2831853n+4.0574394  |  nZ}\begin{aligned}x &= \left\{- \frac{\arctan{\left(\frac{20000}{76479} - \frac{961 \sqrt{76879}}{76479} \right)}}{2} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.63495225\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi - \frac{\arctan{\left(\frac{20000}{76479} - \frac{961 \sqrt{76879}}{76479} \right)}}{2} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.7765449\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi}{2} - \frac{\arctan{\left(\frac{20000}{76479} + \frac{961 \sqrt{76879}}{76479} \right)}}{2} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.91584674\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{- \frac{\arctan{\left(\frac{20000}{76479} + \frac{961 \sqrt{76879}}{76479} \right)}}{2} + \frac{3 \pi}{2} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.0574394\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}