(788(0.577))/((4 π\pi )(1.088))

asked by guest
on Nov 25, 2024 at 5:37 pm



You asked:

Evaluate the expression: 7880.5774π1.088\frac{788 \cdot 0.577}{4 \pi \cdot 1.088}

MathBot Answer:

7880.5774π1.088=1136691088π33.25548387189825537042876562277635\frac{788 \cdot 0.577}{4 \pi \cdot 1.088} = \frac{113669}{1088 \pi} \approx 33.25548387189825537042876562277635


7880.5774π1.088=788577100014π(1+881000)=788577100014π(1+11125)=788577100014π136125=78857710001544125π=788577143521π=454676143521π=11366910881π\begin{aligned}\frac{788 \cdot 0.577}{4 \pi \cdot 1.088}&=788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \left(1 + \frac{88}{1000}\right)}\\&=788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \left(1 + \frac{11}{125}\right)}\\&=788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \frac{136}{125}}\\&=788 \cdot \frac{577}{1000} \cdot \frac{1}{\frac{544}{125} \cdot \pi}\\&=788 \cdot 577 \cdot \frac{1}{4352} \cdot \frac{1}{\pi}\\&=454676 \cdot \frac{1}{4352} \cdot \frac{1}{\pi}\\&=\frac{113669}{1088} \cdot \frac{1}{\pi}\end{aligned}