(788(0.577))/((4 $\pi$ )(1.088))

asked by guest
on Nov 25, 2024 at 5:37 pm



You asked:

Evaluate the expression: \(\frac{788 \cdot 0.577}{4 \cdot \pi \cdot 1.088}\)

MathBot Answer:

\[\frac{788 \cdot 0.577}{4 \cdot \pi \cdot 1.088} = \frac{113669}{1088 \pi} \approx 33.25548387189825537042876562277635\]


\[\begin{aligned}\frac{788 \cdot 0.577}{4 \cdot \pi \cdot 1.088}& = 788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \left(1 + \frac{88}{1000}\right)}\\& = 788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \left(1 + \frac{11}{125}\right)}\\& = 788 \cdot \frac{577}{1000} \cdot \frac{1}{4 \cdot \pi \cdot \frac{136}{125}}\\& = 788 \cdot \frac{577}{1000} \cdot \frac{1}{\frac{544}{125} \cdot \pi}\\& = 788 \cdot 577 \cdot \frac{1}{4352} \cdot \frac{1}{\pi}\\& = 454676 \cdot \frac{1}{4352} \cdot \frac{1}{\pi}\\& = \frac{113669}{1088} \cdot \frac{1}{\pi}\end{aligned}\]