log_2(128) ^ (2x - 1) =

asked by guest
on Nov 12, 2024 at 3:57 pm



You asked:

Evaluate the expression: \(\log_{2}\left( {128}^{2 x - 1} \right)\)

MathBot Answer:

Evaluated



\(\displaystyle \log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x - 1} \right)}}{\log{\left(2 \right)}} \)


Expanded

\[\log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x} \right)}}{\log{\left(2 \right)}} - 7\]


Factored

\[\log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x} \right)}}{\log{\left(2 \right)}} - 7\]