log_2(128) ^ (2x - 1) =
You asked:
Evaluate the expression: \(\log_{2}\left( {128}^{2 x - 1} \right)\)
MathBot Answer:
Evaluated
\(\displaystyle \log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x - 1} \right)}}{\log{\left(2 \right)}} \)
Expanded
\[\log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x} \right)}}{\log{\left(2 \right)}} - 7\]
Factored
\[\log_{2}\left( {128}^{2 x - 1} \right) = \frac{\log{\left(128^{2 x} \right)}}{\log{\left(2 \right)}} - 7\]