Estimate
\[f'(5)\].
graph
\[\small{1}\]
\[\small{2}\]
\[\small{3}\]
\[\small{4}\]
\[\small{5}\]
\[\small{6}\]
\[\small{7}\]
\[\small{8}\]
\[\small{9}\]
\[\small{\llap{-}2}\]
\[\small{\llap{-}3}\]
\[\small{\llap{-}4}\]
\[\small{\llap{-}5}\]
\[\small{\llap{-}6}\]
\[\small{\llap{-}7}\]
\[\small{\llap{-}8}\]
\[\small{\llap{-}9}\]
\[\small{1}\]
\[\small{2}\]
\[\small{3}\]
\[\small{4}\]
\[\small{5}\]
\[\small{6}\]
\[\small{7}\]
\[\small{8}\]
\[\small{9}\]
\[\small{10}\]
\[\small{11}\]
\[\small{12}\]
\[\small{13}\]
\[\small{14}\]
\[\small{15}\]
\[\small{16}\]
\[\small{17}\]
\[y\]
\[x\]
\[y=f(x)\]
Choose 1 answer:
Choose 1 answer:
Mathbot Says...
I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.