x= [1/(1-2.257)][ln (0.236/0.0783)+ αln((1-0.236)/(1-0.0783))]

asked by guest
on Mar 31, 2025 at 1:48 pm



You asked:

Investigate the equation: x=112.257(ln(0.2360.0783)+αln(10.23610.0783))x = \frac{1}{1 - 2.257} \left(\ln\left( \frac{0.236}{0.0783} \right) + α \ln\left( \frac{1 - 0.236}{1 - 0.0783} \right)\right).

MathBot Answer:

The graph of x=112.257(ln(0.2360.0783)+αln(10.23610.0783))x = \frac{1}{1 - 2.257} \left(\ln\left( \frac{0.236}{0.0783} \right) + α \ln\left( \frac{1 - 0.236}{1 - 0.0783} \right)\right) is a line.

The x-intercept is 1000log(2360783)1257- \frac{1000 \log{\left(\frac{2360}{783} \right)}}{1257}.

The α-intercept is log(2360783)log(76409217)- \frac{\log{\left(\frac{2360}{783} \right)}}{\log{\left(\frac{7640}{9217} \right)}}.

The slope of the line is 12571000log(76409217)- \frac{1257}{1000 \log{\left(\frac{7640}{9217} \right)}}.

The slope-intercept form of the line is α=x(12571000log(76409217))log(2360783)log(76409217)α = x \left(- \frac{1257}{1000 \log{\left(\frac{7640}{9217} \right)}}\right) - \frac{\log{\left(\frac{2360}{783} \right)}}{\log{\left(\frac{7640}{9217} \right)}}.

The line in standard form is 1x+α1000log(76409217)1257+1000log(2360783)1257=0 1 x + α \frac{1000 \log{\left(\frac{7640}{9217} \right)}}{1257} + \frac{1000 \log{\left(\frac{2360}{783} \right)}}{1257} = 0

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls