\lim _{x\to \:-\infty \:}\left(\frac{1-3e^x}{4+5e^x}\right)
You asked:
Evaluate the expression: \(\lim_{x \to -\infty}{\frac{1 - 3 {e}^{x}}{4 + 5 {e}^{x}}}\)
MathBot Answer:
\[\lim_{x \to -\infty}{\frac{1 - 3 {e}^{x}}{4 + 5 {e}^{x}}} = \frac{1}{4}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).