a*(32-3 $\pi$ )/(32-2 $\pi$ )
You asked:
Evaluate the expression: \(\frac{a \cdot \left(32 - 3 \cdot \pi\right)}{32 - 2 \cdot \pi}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{a \cdot \left(32 - 3 \cdot \pi\right)}{32 - 2 \cdot \pi} = \frac{a \left(32 - 3 \pi\right)}{32 - 2 \pi} \)
Expanded
\[\frac{a \cdot \left(32 - 3 \cdot \pi\right)}{32 - 2 \cdot \pi} = - \frac{3 a \pi}{32 - 2 \pi} + \frac{32 a}{32 - 2 \pi}\]
Factored
\[\frac{a \cdot \left(32 - 3 \cdot \pi\right)}{32 - 2 \cdot \pi} = \frac{a \left(-32 + 3 \pi\right)}{2 \left(-16 + \pi\right)}\]